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Figure 8. Comparison of our result to prior work [4] on our synthetic
dataset. Our algorithm reconstructs the shape more faithfully due
to the articulation constraints and perspective camera models.

Ours vs GT

Segmentations

.03: '.fc L L7
Figure 9. Our results on the ’skin’ dataset from [26]. On the left,
we show our reconstructed point cloud (blue) vs the ground truth
point cloud (red) for a frame from two different viewpoints. On the

right, we show how our segmentations from the same viewpoints.
See the accompanying video for additional visualizations.

When dealing with real-world data, the availability of
point tracks is very important, and on untextured objects, we
cannot create 3D reconstructions. However, our RayS step
can work with a low number of tracks, as it treats them indi-
vidually. Furthermore, lost point tracks due to occlusions are
a common issue with free camera movement. Our approach
is robust to new tracks and occlusions, but considers only
contiguous tracks. Re-detecting and connecting tracks after
occlusions is an interesting future work.

Compared to most existing techniques, our method re-
quires camera poses to be computed a priori, which can
be computed in many cases from static backgrounds using
StM. Excessive motion in the background can degrade SfMs
performance. However, these poses can be used to gener-
ate better reconstructions using realistic perspective camera
models. Extending our technique to be used without camera
poses is an interesting area for future work.

5. Conclusion

In this work, we have presented an automatic method for
3D reconstruction of articulated motion from video taken by
a single moving camera. Our approach consists of three main
stages; a novel, efficient ray-space optimization, piecewise
rigid reconstruction, and finally a fully articulated recon-
struction. Our ray-space optimization both serves as a robust
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Figure 10. Comparison to [24], with two viewpoints on 3D points
for both frames. There is less distortion on the arms in our result.

CSF  SPM EM-PND RayS-3° RayS-5° RayS-8°

walking 0.0708 0.0861 0.0465 0.1038 0.0636 0.0363
yoga 0.0226 0.0224 0.014 0.0378 0.0167 0.0115
stretch ~ 0.0219 0.0288 0.0156 0.0335 0.0221 0.0117
pickup  0.0607 0.0356 0.0372 0.0333 0.0248 0.0141
drink 0.0123 0.0216 0.0037 0.0063 0.0037 0.0020
dance  0.1349 0.1454 0.1834 0.1697 0.1020 0.0693

Table 2. Comparison of the reconstruction error of RayS versus
other non-rigid reconstruction techniques for different per-frame
separations. The error values for the other methods are taken
from [21]. Green cells are marked as the ones with the lowest

error, and blue cells with the second lowest error. The effect
of the camera speed can be seen in these examples by comparing
our approach with different per-frame separation. Ours is the only
approach using a perspective projection of the ground truth points.

Method Time

Ray-space optimization (Section 3.1) 10sec
Segmentation (Section 3.2) 3 min

Piecewise Reconstruction (CERES) (Section 3.2) 35 min
Joint Computation (Section 3.3) 30sec
Articulated Reconstruction (CERES) (Section 3.3) 75 min

Table 3. Runtimes of our different steps for the Person dataset with
300 frames, 6 articulated parts and 5000 point tracks.

initial solution for the object shape and helps with automati-
cally segmenting the object into respective rigid components.
By consecutively adding articulation constraints, we can re-
construct the full shape and motion of the 3D object. Our
technique is able to deal with large camera motions, perspec-
tive cameras, sparse point tracks and self-occlusions. We
hope that the ideas presented in this paper provide a new per-
spective on the problem of articulated object reconstruction.
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